

King County Water District No. 90

2018 WATER QUALITY REPORT

FOR THE YEAR 2017

OUR OFFICE IS LOCATED AT:

15606 Southeast 128th Street Renton, WA 98059

Phone: 425-255-9600 Fax: 425-277-4128

www.kcwd90.com

BOARD OF COMMISSIONERS

Sam Amira Dick Gidner Byron Murgatroyd

DISTRICT MANAGEMENT STAFF

Darcey J. Peterson, District Manager Joshua Drummond, Operations Manager Doug Swanson, Finance Manager

PURPOSE OF THIS REPORT

King County Water District No. 90 (KCWD90) is committed to providing residents with a safe and reliable supply of high quality drinking water. Seattle Public Utility (SPU) and private laboratories test our water using sophisticated equipment and state of the art procedures. We are proud to report that the water provided by KCWD90 meets or exceeds established state and federal requirements for appearance, safety and water quality standards.

SYSTEM OVERVIEW

KCWD90 serves mostly residential area, east of Renton. KCWD90 purchases approximately 75% of its water from SPU's treated Cedar River Supply (chlorination, fluoridation, UV, and ozone). The remaining 25% of supply is produced from our own wells. Wellfield treatment includes disinfection, oxidation/filtration for manganese removal and fluoridation. The Washington Department of Health (DOH) has determined the District's Wellfield is rated as "low susceptibility" for contamination. This is due in part to the fact that the District's ground water source is in a confined aguifer.

In 2017, KCWD90 distributed 646 million gallons of water to its customers. Of this amount, approximately 10.02% is considered "lost water" or Distribution System Leakage (DSL). Lost water is a combination of unseen leaks, under registering meters and/or possible water theft. The District takes pride in delivering you safe drinking water. To get that water to your homes the water needs to be treated, pumped, and stored for use. Then it needs to travel through 131 miles of water main to get to our customers. This is all done for less than a cost of a penny per gallon.

LEAD AND COPPER TESTING KCWD90 2016 Lead and Copper Monitoring Results Homes Ex-Parameter and 90° Percen MCLG Action Level+ ceeding Action Source Units tile* Level Lead, ppb 0 15 1.93 0 of 30 Corrosion of household plumbing systems 1.3 0.074 0 of 30 1.3 Copper, ppm

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. KCWD90 is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by running your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800) 426-4791 or at http://www.epa.gov/safewater/lead. Lastly, remember that drinking water is typically only a minor contributor to overall exposure to lead. Other sources, including paint, soil, and food also contribute.

KCWD90 takes any potential lead exposure very seriously. Your water starts its journey as rainfall or snowpack with no detectable lead. Eventually, the water reaches your home or business through a pipe called a service line. Unlike some of the cities you may have heard about in the news, KCWD90 does not have any lead service lines. While lead levels in the District are generally considered safe, it is possible to find elevated levels of lead and copper in some home tap samples. These elevated levels usually come from corrosion of lead components in a home's plumbing. Corrosion is a chemical process that can release lead by eating away at the plumbing system. By treating our water, the District in conjunction with Seattle Public Utilities (SPU) successfully reduces corrosion. We purchase 75% of our water from SPU and 25% comes from our own wells. Both of these sources of water are lead free. In addition, the District benefits from the Corrosion Control Efforts of SPU.

Here is some of what SPU does to ensure the water system is less corrosive to lead plumbing:

- Developed a corrosion optimization program in 2003. This process reduces the potential for contaminants to leach into the water, which is possible in homes with lead solder.
- Continuously monitor water chemistry at all treatment facilities and collect routine samples throughout the distribution system to ensure it maintains water pH at a less-corrosive level.
- Monitor water quality indicators at distribution system locations and report results monthly to the Washington Department of Health (DOH).

Smartlign.com + 800 012-1417 + 5-8749

DEFINITIONS

ACTION LEVEL: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Action levels apply to Lead and Copper testing.

MCLG: Maximum Contaminant Level Goal - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL: Maximum Contaminant Level - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MRDL: Maximum Residual Disinfectant Level - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG: Maximum Residual Disinfectant Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

TT: Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

NTU: Nephelometric Turbidity Unit
- Turbidity is a measure of how
clear the water looks. The Turbidity
MCL that applied to the Cedar supply in 2016 is 5 NTU.

NA: Not Applicable

ND: Not Detected

ppm: 1 part per million = 1 mg/L = 1 milligram per liter

ppb: 1 part per billion = 1 ug/L = 1 microgram per liter

1 ppm =1000 ppb

Water quality data for nonregulated parameters, such as pH, alkalinity, hardness, and conductivity, are provided on our website at http://www.seattle.gov/util/ MyServices/Water/Water Quality/ WaterQualityAnalyses/index.htm

^{* 90}th Percentile: Out of every 10 homes sampled, 9 were at or below this level. + The concentration of a contaminant which, if exceeded, triggers treatment or other requirements, which a water system must follow. Next round of Lead and Copper Testing is scheduled for summer of 2019.

	2017 RESULTS		EPA's Allowa- ble Limits		Levels in Cedar Water		Levels in KCWD No.90 Wellfield Water		
	Detected Compounds	Units	MCLG	MCL	Average	Range	Average	Range	Typical Sources
Raw Water	Cryptosporidium*	#/100L	NA	NA	0.03	ND to 2	N/A	N/A	Naturally present in the environment
	Total Organic Carbon	ppm	NA	тт	0.8	0.3 to 1.5	N/A	N/A	Naturally present in the environment
Finished Water	Arsenic	ppb	o	10	0.5	0.4 to 0.6	N/A	N/A	Erosion of natural deposits
	Barium	ppb	2000	2000	1.7	1.4 to 1.9	N/A	N/A	Erosion of natural deposits
	Bromate	ppb	0	10	0.04	ND-1	N/A	N/A	By-product of drinking water disinfection
	Chlorine	ppm	MRDLG =4	MRDL =	Average = 0.88 Range = 0.31 to 1.47		0.97	.71 to 1.22	Water additive used to control microbes
	Chromium	ppb	100	100	0.27	0.25 to 0.33	N/A	N/A	Erosion of natural deposits
	Fluoride	ppm	4	4	0.7	0.3 to 0.9	0.68	0.44 to 0.89	Water additive, which promotes strong teeth
	Haloacetic Acids(5)	ppb	NA	60	N/A	N/A	20.75	8 to 31	By-products of drinking water chlorination
	Manganese	ppm	0.05	0.05	N/A	N/A	0.015	0.002 to 0.035	Naturally present in the environment
	Nitrate	ppm	10	10	N/A	N/A	ND	(one sample)	Erosion of natural deposits
	Total Trihalomethanes	ppb	NA	80	N/A	N/A	21.5	18 to 34	By-products of drinking water chlorination
	Turbidity	NTU	NA	тт	0.3	0.2 to 2.5	N/A	N/A	Soil runoff

Cryptosporidium was not detected in any Samples from the Cedar and Tolt Supply (3 samples each).

SENSITIVE PEOPLE

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants, may be particularly at risk from infections. If there is concern, these people should seek advice about drinking water from their health care providers. EPA and the Center for Disease Control (CDC) provide guidelines on appropriate means to reduce the risk of infection by Cryptosporidium and other microbial contaminants. For this information please call the Safe Drinking Water Hotline (800) 426-4791.

TIPS FOR USING WATER WISELY

Here are some great ways to use water wisely and keep your water bills as low as they can be:

Check for leaks and fix them as soon as you can – follow our step-by-step videos at www.savingwater.org or call 206-684-SAVE (7283) to learn more.

Get a \$100 rebate for replacing old toilets with Premium toilets. The average home can save up to \$200 on your water bills, depending on household size and existing toilets. Premium toilets use 1.1 gallons of water per flush (or less) compared to older toilets that use up to 5 gallons per flush. Not only do these toilets save water with every flush, they are proven to perform by independent laboratory testing.

Use less water in your garden by putting a thick layer of mulch around your plants.

Visit www.savingwater.org for gardening tips, videos and classes.

For advice in your garden: call the Garden Hotline at (208) 633-0224 or help@gardenhotline.org.

help@gardenhotline.org | 206.633.0224 | www.gardenhotline.org

TELL US WHAT YOU THINK ABOUT USING WATER WISELY!

Go to <u>www.savingwater.org</u> and take our survey and enter to win a free home water and energy saving kit!

DO YOU HAVE A LEAK?

Here's what you can do to prevent or reduce leaks, which could save a lot of money on your water bill!

- Replace worn toilet flappers.
- Replace worn washers and gaskets in faucets, showerheads and hoses.
- Keep an eye out for unusually damp or green patches in your yard - these could be a sign of an underground leak.
- Check irrigation systems each spring for freeze damage and broken parts.

Visit <u>www.savingwater.org</u> or call 206-684-7283 for more ways to use water wisely.

CONSERVATION AND SALMON

The Saving Water Partnership (SWP), which is made up of KCWD90 and 18 water utility partners, has set a six-year conservation goal: "Reduce per capita use from current levels so that the SWP's total average annual retail water use is less than 105 million gallons per day (mgd) from 2013 through 2018 despite forecasted population growth." For 2017, the Saving Water Partnership met this goal, using 96.6 mgd.

Conserving Water Helps Salmon

Feel proud when you conserve water – you're saving money on your water bill and keeping water in the rivers and streams for salmon. It's especially important to use water wisely in the summer and fall months,

when stream flows are lowest. Your actions help protect precious freshwater habitat for salmon and other species that live in and around our streams. Witness your work when salmon make their annual migration home to our local streams. Look for the Salmon SEEson campaign this summer and fall for the latest on when and where the fish will be.

REQUIRED ADDITIONAL HEALTH INFORMATION

To ensure that tap water is safe to drink, EPA prescribes limits on the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800) 426-4791.

The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally
 occurring or result from urban stormwater runoff, industrial or domestic
 wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organics, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.